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Outline
● Part 1: Calibrated surrogate losses 

❖Q. What are minimum requirements for loss functions? 
● Part 2: Loss functions in robust learning 

❖ Q. Is it possible to design robust loss functions?
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Setting: Binary Classification
● Input 

❖ sample  : feature  and label  

● Output: classifier  

❖ use  to predict labels 

❖ criterion: misclassification rate 

{(xi, yi)}n
i=1 xi ∈ 𝒳 yi ∈ {±1}

f : 𝒳 → ℝ

sign( f( ⋅ ))

R01( f ) = 𝔼 [1[Y ≠ sign( f(X))]]

f(x)0

f
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    0-1 loss  
 if 

 if 

ϕ01(Yf(X))
1 Y ≠ sign( f(X))
0 Y = sign( f(X))



Surrogate Losses
●Motivation: minimizing 0-1 loss is NP-hard 

● Replace 0-1 loss with surrogate loss
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0-1 loss 
ϕ01(α) = 1{α ≤ 0}
ϕ01

correctwrong

easily optimizable if convex and smooth

?

no gradient for discrete function

surrogate loss 
ϕ(α)
ϕ

correctwrong hinge loss,

logistic loss, etc.



Elements of Learning Theory 5

(empirical) surrogate risk 

R̂ϕ( f ) =
1
n

n

∑
i=1

ϕ(yi f(xi))

(population) surrogate risk 
Rϕ( f ) = 𝔼[ϕ(Yf(X))]

target risk 
Rϕ01

( f ) = 𝔼[ϕ01(Yf(X))]

Generalization theory: 
If model is not too complicated,

then justified (roughly speaking)

Our interests: Calibration theory



Q. What is a desirable surrogate?
●A. surrogate risk minimizer should be target risk minimizer
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surrogate risk

target risk

For two losses  (target) and  (surrogate),ψ ϕ

Definition. Surrogate  is calibrated to target 

if for any , there exists  such that for all ,


.

ϕ ψ
ε > 0 δ > 0 f

Rϕ( f ) − R*ϕ < δ ⟹ Rψ( f ) − R*ψ < ε



How to check calibration? 7

Definition. Surrogate  is calibrated to target 

if for any , there exists  such that for all ,


.

ϕ ψ
ε > 0 δ > 0 f

Rϕ( f ) − R*ϕ < δ ⟹ Rψ( f ) − R*ψ < ε

Definition. (calibration function) 

δ(ε) = inf
f

Rϕ( f ) − R*ϕ s.t. Rψ( f ) − R*ψ ≥ ε

Disclaimer: calibration function is defined over class-conditional risk to be precise

Steinwart, I. (2007). How to compare different loss functions and their risks. Constructive Approximation, 26(2), 225-287.

[Steinwart 2007]

Rψ( f ) − R*ψ ≥ ε ⟹ Rϕ( f ) − R*ϕ ≥ δ

-  definition of limitε δ

contraposition

easy to ask existence

of  given δ > 0 ε

smallest possible δ given lower bound of target

https://link.springer.com/article/10.1007/s00365-006-0662-3


target risk surrogate riskmonotone

Main Tool: Calibration Function

● Provides iff condition 
❖ calibrated to    for all  

● Provides excess risk bound 

❖ calibrated to   

ψ ⟺ δ(ε) > 0 ε > 0

ψ ⟺ Rψ( f ) − R*ψ ≤ (δ**)−1( Rϕ( f ) − R*ϕ )

Definition. (calibration function) 
δ(ε) = inf

f
Rϕ( f ) − R*ϕ s.t. Rψ( f ) − R*ψ ≥ ε

minimizing surrogate risk = minimizing target risk

(we know convergence rate in addition)

Definition. (calibration function) 

δ(ε) = inf
f

Rϕ( f ) − R*ϕ s.t. Rψ( f ) − R*ψ ≥ ε

smallest possible surrogate given lower bound of target

Steinwart, I. (2007). How to compare different loss functions and their risks. Constructive Approximation, 26(2), 225-287.

[Steinwart 2007]

https://link.springer.com/article/10.1007/s00365-006-0662-3


Case: Binary Classification 9

[Bartlett et al. 2006]

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006). 
Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.

Calibration function for 0-1 loss 

δ(ε) = inf
f

Rϕ( f ) − R*ϕ s.t. Rϕ01
( f ) − R*ϕ01

≥ ε

smallest possible surrogate given lower bound of 0-1

iff condition: δ(ε) > 0 ∀ε > 0

inf
f {Rϕ( f ) Rϕ01

( f ) > R*ϕ01} > inf
f

Rϕ( f )
calibrated iff

 is non-optimal wrt 0-1 lossf

minimum risk of non-optimal 
classifiers


minimum risk of all classifiers

>

●Check the latter condition to see if calibrated 
●More simple equivalent conditions available (next slide)
Disclaimer: several literature defines calibration by the latter condition

https://people.eecs.berkeley.edu/~wainwrig/stat241b/bartlettetal.pdf


Case: Binary Classification

●Most of well-known losses are calibrated 

❖ perceptron loss  is notϕ(α) = [−α]+
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Theorem. If surrogate  is convex, it is calibrated to  iff

● differentiable at 0,

● .

ϕ ϕ01

ϕ′ (0) < 0

[Bartlett et al. 2006]

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006). 
Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.

hinge loss

ε

δ
1

0 1

δ(ε) = εϕ(α) = [1 − α]+

squared loss

ε

δ
1

0 1

δ(ε) = ε2ϕ(α) = (1 − α)2

https://people.eecs.berkeley.edu/~wainwrig/stat241b/bartlettetal.pdf


Outline
● Part 1: Calibrated surrogate losses 

❖ Q. What are minimum requirements for loss functions? 
 

 

● Part 2: Loss functions in robust learning 
❖Q. Is it possible to design robust loss functions?

A. calibration: surrogate minimizer = target minimizer

● confirmed via calibration function

● simple iff conditions for binary classification
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●Adversarial attacks:  
manipulate predictions by adding imperceptible small noise 

●More interests in whether our learning method are robust 
❖ important in applications such as autonomous driving, 
medical diagnosis

Classifier is vulnerable to “attacks” 12

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In ICLR, 2015.

[Goodfellow et al. 2015]



Formulation of Adversary
● Standard learning: 
no penalty if classified to 
the correct side of the boundary
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no penalty no penalty

no penalty penalized● Robust learning: 
prediction close to the boundary 
will be penalized even if 
correctly classified 

❖ the boundary will be crossed 
over by attacks 

❖ assume L2-ball attack



Standard vs. Robust Learning 14

● Standard learning: 
minimize 0-1 loss

Rϕ01
( f ) = 𝔼 [ϕ01(Yf(X))]

● Robust learning: 
minimize robust 0-1 loss 

Rϕγ
( f )=𝔼[ max

Δ∈B2(γ)
ϕ01(Yf(X + Δ))]

worst L2-attack

learn best (min) classifier

under worst-case (max) attack 
= robust optimization

0-1 loss 
ϕ01(α) = 1{α ≤ 0}
ϕ01

correctwrong



Relaxation of Robust Optimization
●Direct optimization of robust 0-1 loss is hard 
● Existing relaxation 

 
❖ Taylor approximation [Shaham et al. 2018; etc.] 
 
local approximation of original objective 
does not necessarily lead to global minimum 

❖Minimize convex upper bound [Wong & Kolter 2018; etc.] 
 
global minimum of upper bound 
does not necessarily equal to minima 
of original objective 

Not necessarily calibrated to robust 0-1 loss!
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Shaham, U., Yamada, Y., & Negahban, S. (2018). Understanding adversarial training: Increasing local stability of supervised 
models through robust optimization. Neurocomputing, 195-204.
Wong, E., & Kolter, Z. (2018,). Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope. 
In International Conference on Machine Learning (pp. 5286-5295).



What is calibrated surrogates? 16

● Robust learning● Standard learning

Target loss = robust 0-1 loss 

Rϕγ
( f )=𝔼[ max

Δ∈B2(γ)
ϕ01(Yf(X + Δ))]

Target loss = 0-1 loss 
Rϕ01

( f ) = 𝔼 [ϕ01(Yf(X))]

Surrogate loss

ϕ

Q. What kind of losses are 
calibrated?

calibrated

[Bartlett et al. 2006] calibrated

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006). 
Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.



● Linear model    where  

● General case is hard to analyze

fθ(x) = θ⊤x ∥θ∥2 = 1

Special case: linear model + L2-attack 17

no penalty penalized

θ⊤x > γ θ⊤x ≤ γ

x

margin = θ⊤x

max
Δ∈B2(γ)

ϕ01(Yf(X + Δ))
robust 0-1 loss

= 1{Yf(X) ≤ γ} := ϕγ(Yf(X))



Isn’t it a piece of cake? 18

● Robust learning● Standard learning

ϕ

0-1 loss 1{α ≤ 0}

ϕ

γ

robust 0-1 loss

1{α ≤ γ}

Theorem [Bartlett et al. 2006].  
If surrogate  is convex,


1.  is differentiable at 0

2. 


are necessary and sufficient 
for calibration.

ϕ
ϕ
ϕ′ (0) < 0

P. L. Bartlett, M. I. Jordan, & J. D. McAuliffe. (2006). 
Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473), 138-156.

correctwrong correctwrong non- 
robust

Conjecture. 
If surrogate  is convex,


1.  is differentiable at 

2. 


are necessary and sufficient?

ϕ
ϕ α = γ
ϕ′ (γ) < 0



Main Result

● Intuition (Note: proven by checking  for some  to be precise) 

● Nonconvex calibrated surrogates exist 
❖ e.g. ramp loss

δ(ε) = 0 ε
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Theorem [Bao et al. 2020].  
Any convex surrogates are not calibrated to robust 0-1 loss 
under linear models + L2 attack.

Bao, H., Scott, C., & Sugiyama, M. (2020). 
Calibrated Surrogate Losses for Adversarially Robust Classification. In COLT, 2020.

α

ϕ

1. predictions becomes close to 0 
as p(y |x) → 1

2

2. predictions close to 0 are regarded

    as non-robust

ϕγ

γ

correctwrong non- 
robust

ϕ conditional risk

for p(y = 1 |x) > 1

2

conditional risk

for p(y = 1 |x) < 1

2

http://proceedings.mlr.press/v125/bao20a.html


Summary |

Calibrated Surrogates and Robust Learning
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● Robust learning● Standard learning

Surrogate loss




differentiable at 0 & 

ϕ

ϕ′ (0) < 0

Result

● no convex calibrated surrogates

● nonconvex calibrated surrogates 

exist (e.g. ramp loss)

calibrated

[Bartlett et al. 2006]

calibrated

[Bao et al. 2020]

Bao, H., Scott, C., & Sugiyama, M. (2020). 
Calibrated Surrogate Losses for Adversarially Robust Classification. In COLT, 2020.

ϕγ

γ

correctwrong non- 
robust

robust 0-1 loss under linear model

+ L2-attack

ϕ01

correctwrong

0-1 loss



Summary
●Calibrated surrogate losses: 
surrogate risk minimizer = target risk minimizer 

❖ can be confirmed via calibration function 
●Robust learning from calibration perspective: 
⇒ no convex calibrated losses 

❖ future: how about minimax surrogates? 
● Take home:   

 
❖ similar idea adopted to analyze robustness 
to symmetric label noise [Reid & Williamson 2010]

calibration is interesting not only for minimizer consistency 
but also for robust loss design!
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surrogate risk

target risk

Reid, M. D., & Williamson, R. C. (2010). Composite binary losses. Journal of Machine Learning Research, 11, 2387-2422.

http://www.jmlr.org/papers/volume11/reid10a/reid10a.pdf

