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Research interests

■ Learning theory: how to handle performance metrics for 

class-imbalance  
[Bao & Sugiyama 19] (in submission) 

■ Reinforcement learning with low-cost data 
[WCBTS19] (ICML2019) Imitation Learning from Imperfect Demonstration 

■ Domain adaptation: how to learn when training ≠ test  
[KCBHSS19] (AAAI2019) 
Unsupervised Domain Adaptation Based on Source-guided Discrepancy 

■ Weak supervision: how to learn without labels  
[BNS18] (ICML2018) 
Classification from Pairwise Similarity and Unlabeled Data

today’s topic
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supervised learning + real-world constraints



Inference in Real-world
■ Prediction of President Election 

▶ cf. social desirability bias 
▶ tend to answer in the ways “what others desire” 
▶ unexpected results in 2016 US president election

https://www.270towin.com/2016_Election/

Brownback, A., & Novotny, A. (2018). Social desirability bias and polling errors in the 2016 presidential election. 
Journal of Behavioral and Experimental Economics, 74, 38-56.

[Brownback & Novotny 2018]

Hard to obtain real answers!



Inference in Real-world
■ Integration of hospital databases 

▶ CAD (Computer-Aided Diagnosis) prevailing 
▶ each hospital has limited amount of data 
▶ want to unify among hospitals as much as possible

[Wachinger & Reuter 2016]

Wachinger, C., & Reuter, M. Alzheimer's Disease Neuroimaging Initiative. (2016). 
Domain adaptation for Alzheimer's disease diagnostics. Neuroimage, 139, 470-479.

Data distribution may differ!

?



What’s transfer learning?
■Usual machine learning 

■ Transfer learning 

■
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Many terminologies: transfer learning, covariate shift adaptation, 
domain adaptation, multi-task learning, etc.

training data

training 
distribution

test data

test 
distribution



Unsupervised Domain Adaptation
■ Input 

▶ training labeled data:   

▶ test unlabeled data:   

■ Goal 
▶ obtain a predictor that performs well on test data 
 
 

▶ Q. How to estimate the target risk?

{xi, yi} ∼ pS

{x′�j} ∼ pT
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argmin
g

ErrT(g) = 𝔼T[ℓ(Y, g(X))]
no access

(source)

(target)
 scarce 

abundant



Outline
■ Introduction ̶ Transfer Learning 

■ History/Comparison of Existing Approaches 

■ Proposed Method 

■ Experiments and Future Work

 7



Potential Solutions
■ Importance Weighting
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■ Representation Learning

making them 
similar

mapping into 
shared representations



Potential Solutions
■ Importance Weighting
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■ Representation Learning

making them 
similar

mapping into 
shared representations

min
supp(q)⊆supp(pS)

D(q, pT) min
φ

D(φ(pS), φ(pT))

It’s important to measure closeness of distributions!



Divergences  10

f-divergence Integral Probability 
Metric (IPM)

TVKL

 -divergenceχ2

Hellinger
MMD
Wasserstein

Energy distance

Kernel Stein Discrepancy

Cramer

Jensen-Shannon

Tsallis-divergence

Renyí divergence

 -divergenceβ

 -divergenceγ



Divergences  11

f-divergence Integral Probability 
Metric (IPM)

p
q

p − q



What is a good measure?
■ Postulate: classification risks should be closer if 
distances between distributions are small  
                      

■ IPM could be a more suitable family! 

▶ IPM:   

▶ represented in difference of expectations

ErrT(g) − ErrS(g) ≤ D(pT, pS) + C

DΓ(p, q) = sup
γ∈Γ

𝔼p[γ] − 𝔼q[γ]
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f-div. IPM
p
q

p − q

𝔼T[ℓ(g)] − 𝔼S[ℓ(g)]

  : real-valued function class 
(e.g. 1-Lipschitz for Wasserstein)
Γ

ErrS[g] = 𝔼pS
[ℓ(g(X), fS(X))]

loss func. labeling func.

expectation over marginal 
of source dist.

(parallel notation for target domain as well)



Simple Approach: Total Variation
■ Total Variation   

■ classification risk bound 

      

■ Problems 
▶ TV is overly pessimistic 
▶ TV is hard estimate within finite sample

DTV(p, q) = 2 sup
A:mes′�ble

p(A) − q(A)

ErrT(g) − ErrS(g) ≤
DTV(pS, pT) + min{𝔼S[ | fS − fT | ], 𝔼T[ | fS − fT | ]}

 13

[Kifer+ VLDB2004]

Kifer, D., Ben-David, S., & Gehrke, J. (2004, August). Detecting change in data streams. In Proceedings of the 
Thirtieth international conference on Very large data bases-Volume 30 (pp. 180-191). VLDB Endowment.

we can make a distribution 
with arbitrarily large TV

  are distributions 
over  

p, q
𝒳



First Attempt:  -divergenceℋΔℋ  14

[Kifer+ VLDB2004; Blitzer+ NeurIPS2008]

Kifer, D., Ben-David, S., & Gehrke, J. (2004, August). Detecting change in data streams. In Proceedings of the 
Thirtieth international conference on Very large data bases-Volume 30 (pp. 180-191). VLDB Endowment. 
Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Wortman, J. (2008). Learning bounds for domain adaptation. 
In Advances in neural information processing systems (pp. 129-136).

Definition ( -divergence)ℋ

Dℋ(p, q) = 2 sup
g∈ℋ

p(g(X) = 1) − q(g(X) = 1) ;  ℋ ⊂ {±1}𝒳

▶   by def. ⇒ could be less pessimistic 
▶ estimator   can be computed by ERM in   (omitted)

Dℋ(p, q) ≤ DTV(p, q)

D̂ℋ(p, q) ℋ

Lemma (finite-sample convergence)

Dℋ(pS, pT) ≤ D̂ℋ(pS, pT) + Õp ( 1
min{nS, nT} )

Let  . Then, with prob. at least  ,d = VCdim(ℋ) 1 − δ

empirical estimator
D̂ℋ(pS, pT) = 2 sup 1

nS
∑x∈S 1{g(x)=1} − 1

nT
∑x∈T 1{g(x)=1}



First Attempt:  -divergenceℋΔℋ  15

[Kifer+ VLDB2004; Blitzer+ NeurIPS2008]

Definition (symmetric difference hypothesis  )ℋΔℋ

Theorem (domain adaptation bound)

ErrT(g) ≤ ErrS(g) +
1
2

D̂ℋΔℋ(pS, pT) + Õp ( 1
min{nS, nT} ) + λ

Let  . Then, with prob. at least  , for any  ,d = VCdim(ℋ) 1 − δ g

where     (joint minimizer)λ = min
h∈ℋ

ErrS(h) + ErrT(h)

             for some      (  XOR)g ∈ ℋΔℋ ⟺ g = h ⊕ h′� h, h′� ∈ ℋ ⊕ :

▶   is intractable; though   is tractable 
▶   is intrinsically impossible to estimate; assume to be small

D̂ℋΔℋ D̂ℋ

λ

Issues

(    cannot be accessed)∵ ErrT



Extension: discrepancy measure  16

[Mansour+ COLT2009]

Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. 
In Proceedings of Computational Learning Theory.

Definition (discrepancy)

Ddisc,ℓ(p, q) = sup
g,g′�∈ℋ

Errp(g, g′�) − Errq(g, g′�) ;  Err(g, g′�) = ∫ ℓ(g(X), g′�(X))dp

loss is generalized

Lemma (finite-sample convergence)

Ddisc,ℓ(pS, pT) ≤ D̂disc,ℓ(pS, pT) + Op ( 1
min{nS, nT} )

Let Rademacher averages of   on the distribution   (  resp.) 
are bounded by   (  resp.). Assume   is Lipschitz cont. 
Then, with prob. at least  ,

ℋ pS pT

Op(n−1/2
S ) Op(n−1/2

T ) ℓ
1 − δ

▶ intuition: seeking for potential labelings maximizing diff. of losses  
▶   : empirical estimator of  ;   D̂disc,ℓ Ddisc,ℓ D̂disc,ℓ(p, q) = sup

g,g′�∈ℋ

̂Err p(g, g′�) − ̂Err q(g, g′ �)



Extension: discrepancy measure  17

[Mansour+ COLT2009]

Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. 
In Proceedings of Computational Learning Theory.

Theorem (domain adaptation bound)

ErrT(g, fT) − Err*T ≤ ̂Err S(g, g*S ) + D̂disc,01(pS, pT) + Op ( 1
min{nS, nT} ) + λ

Let Rademacher averages of   on the distribution   (  resp.) are bounded 
by   (  resp.). Assume   is symmetric. Then, with prob. at least  , 
for any  ,

ℋ pS pT

Op(n−1/2
S ) Op(n−1/2

T ) ℋ 1 − δ
g

where     (joint minimizer)λ = ErrT(g*S , g*T )
= ErrT(g*T , fT)

▶   is generally intractable; needs joint sup of   and   

(tractable in simple cases) 
▶   is intrinsically impossible to estimate; assume to be small

D̂disc,ℓ g g′�

λ

Issues



Comparison of Existing Measures  18

Total 
Variation

 -divergenceDℋΔℋ discrepancy ？？？
[KBG04][BBCP06] [MMR09]

pessimistic
hard to estimate DA bound

intractable

Q. Can we construct a tractable/tighter measure?



Outline
■ Introduction ̶ Transfer Learning 

■ History/Comparison of Existing Approaches 

■ Proposed Method 

■ Experiments and Future Work
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Proposed: Source-guided Discrepancy  20

Idea: supremum with one variable should be tractable

Definition (Source-guided Discrepancy)
Dsd,ℓ(p, q) = sup

g∈ℋ
Errp(g, g*S ) − Errq(g, g*S ) ;  Err(g, g′�) = ∫ ℓ(g(X), g′�(X))dp

where     (source risk minimizer)g*S = argmin
g∈ℋ

ErrS(g)

fix one function

cf. (discrepancy)

Ddisc,ℓ(p, q) = sup
g, g′� ∈ℋ

Errp(g, g′� ) − Errq(g, g′� )

▶   by definition (S-disc is finer)Dsd,ℓ(p, q) ≤ Ddisc,ℓ(p, q)



S-disc Estimator = ERM
■Consider binary classification (loss function:  ) 

▶ assume   is symmetric:         

■ Estimation Algorithm 
▶ train a classifier only using source ( ) 

▶ minimize cost-sensitive risk  

ℓ01

ℋ g ∈ ℋ ⟹ −g ∈ ℋ

g*S

Jℓ
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Theorem D̂sd,01(pS, pT) = 1 − min
g∈ℋ

Jℓ01
(g)

where     (cost-sensitive risk)Jℓ(g) =
1
nS

nS

∑
i=1

ℓ(g(xS
i ), g*S (xS

i )) +
1
nT

nT

∑
j=1

ℓ(g(xT
j ), − g*S (xT

j ))

source: labeled by  g*S target: labeled by  −g*S

Similar idea to  -divergence, but we don’t need to use  ℋ ℋΔℋ



Finite-Sample Consistency  22

Theorem
Let Rademacher averages of   on the distribution   (  resp.) 
are bounded by   (  resp.). Then, with prob. at least  ,

ℋ ⊗ ℋ pS pT

Op(n−1/2
S ) Op(n−1/2

T ) 1 − δ

Dsd,ℓ(pS, pT) ≤ D̂sd,ℓ(pS, pT) + Op ( 1
min{nS, nT} )

▶   

▶        

ℋ ⊗ ℋ = {g ⋅ g′� ∣ g, g′� ∈ ℋ}

Rad(ℋ) = Op(n−1/2) ⟹ Rad(ℋ ⊗ ℋ) = Op(n−1/2)

empirical S-disc is tractable 
consistent (as well as  ,  )Dℋ Ddisc



Domain Adaptation Bound  23

Theorem (domain adaptation bound)

ErrT(g, fT) − Err*T ≤ ̂Err S(g, g*S ) + D̂sd,ℓ(pS, pT) + Op ( 1
min{nS, nT} ) + λ

Let Rademacher averages of   on the distribution   (  resp.) 
are bounded by   (  resp.). 
Assume the loss   satisfies the triangle inequality. 
Then, with prob. at least  , for any  ,

ℋ ⊗ ℋ pS pT

Op(n−1/2
S ) Op(n−1/2

T )
ℓ

1 − δ g

where     (joint minimizer)λ = ErrT(g*S , g*T )

  is tractable 

  (always tighter bound) 

  is impossible to estimate

D̂sd,ℓ

Dsd,ℓ ≤ Ddisc,ℓ

λ



Summary

Tractable estimator: can be computed by ERM 

Tighter measure 

DA bound, but still   (impossible term) existsλ
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Source-guided Discrepancy
Dsd,ℓ(p, q) = sup

g∈ℋ
Errp(g, g*S ) − Errq(g, g*S )

fix one function

ErrT(g, fT) − Err*T ≤ ̂Err S(g, g*S ) + D̂sd,ℓ(pS, pT) + Op ( 1
min{nS, nT} ) + λ

DA bound



Outline
■ Introduction ̶ Transfer Learning 

■ History/Comparison of Existing Approaches 

■ Proposed Method 

■ Experiments and Future Work
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Computational Time

■  , 200 synthetic examples for both source and target 

■   is an approximator of   

▶ faster, but does not entail DA bound 

■ discrepancy is computed via approximation 
▶ resorted to semi-definite relaxation

d = 2

dℋ DℋΔℋ
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Source Selection
■ Domains 

▶ source: 5 clean MNIST-M, 5 noisy MNIST-M 
▶ target: MNIST 
(clean MNIST-M is known to be useful for MNIST) 

■ Setup 
▶ measure the distance between target and each 
source 

▶ sort in ascending order
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5 clean MNIST-M should admit 
smaller distance than noisy ones MNIST MNIST-M



Source Selection

■ S-disc successfully capture the difference between 
clean and noisy MNIST-M
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be
tt
er

sample size

Vertical-axis: # of clean MNIST-M domains in top 5



Following Work  29

Zhang, Y., Liu, T., Long, M., & Jordan, M. I. (2019). Bridging Theory and Algorithm for Domain Adaptation. 
In ICML, 2019.

[Zhang+ ICML2019]

Dsd,ℓ(p, q) = sup
g∈ℋ

Errp(g, g*S ) − Errq(g, g*S )

fix source-risk minimizer

DMDD, f,ℓ(p, q) = sup
g∈ℋ

Errp(g, f ) − Errq(g, f )

①fix an arbitrary O

ϕ(m)

m

②limited to margin lossDefinition: Margin Disparity Discrepancy

Source-guided Discrepancy

ErrT(g, fT) ≤ ̂Err S(g, g*S ) + D̂MDD,g,ℓ(pS, pT) + Op ( 1
min{nS, nT} ) + λ

⇒ extended to multi-class (one-vs-all) case

DA bound based on MDD



Conclusion
■ Discrepancy measure is important in domain adaptation 

▶ IPM is a nice family; can be connected to DA bound 
▶ “fixing one function” would be a good idea  

  
■ Potential directions 

▶ remove the unestimable term in DA bound ( ) 
▶ any “optimality” in DA bound?

Dsd,ℓ(p, q) = sup
g∈ℋ

Errp(g, g*S ) − Errq(g, g*S )

fix source-risk minimizer

λ
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rethinking DA framework (adaptation algorithms, available supervision) 
might be needed…


